143 research outputs found

    Quaternary Tephrochronology of the Scotia Sea and Bellingshausen Sea, Antarctica

    Get PDF
    The Southern Ocean is a region of the world's ocean which is fundamental to the generation of cold deep ocean water which drives the global thermo-haline circulation. Previous investigations of deep-sea sediment cores south of the Polar Front have been significantly constrained by the lack of a suitable correlation and dating technique. In this study, deep-sea sediment cores from the Bellingshausen, Scotia and Weddell seas have been investigated for the presence of tephra layers. The major oxide and trace element composition of glass shards have been used to correlate tephra isochrones over distances in excess of 600 km. The source volcanoes for individual tephra layers have been identified. Atmospheric transport distances greater than 1500 km for >32 μm shards are reported. One megascopic tephra is identified and correlated across 7 sediment drifts on the continental rise in the Bellingshausen Sea. Its occurrence in a sedimentary unit that has been biostratigraphically dated to δ^18 0 substage 5e identifies it as a key regional marker horizon for that stage. An unusual bimodal megascopic ash layer erupted from Deception Island, South Shetland Islands, has been correlated between 6 sediment cores which form a 600 km NW-SW transect from the central Scotia Sea to Jane Basin. The megascopic ash layer has been ^14C dated at 10,670 years BP. It represents the last significant input of tephra into the Scotia Sea or Jane Basin from that volcano and forms an important early Holocene marker horizon for the region. Five disseminated tephras can be correlated to varying extents across the central Scotia Sea cores. Together with the megascopic tephra they form a tephrostratigraphic framework that will greatly aid palaeoclimatic, palaeoenvironmental and palaeoceanographic investigations in the region

    Chemical weathering and provenance evolution of Holocene–Recent sediments from the Western Indus Shelf, Northern Arabian Sea inferred from physical and mineralogical properties

    Get PDF
    We present a multi-proxy mineral record based on X-ray diffraction and diffuse reflectance spectrophotometry analysis for two cores from the western Indus Shelf in order to reconstruct changing weathering intensities, sediment transport, and provenance variations since 13 ka. Core Indus-10 is located northwest of the Indus Canyon and exhibits fluctuations in smectite/(illite + chlorite) ratios that correlate with monsoon intensity. Higher smectite/(illite + chlorite) and lower illite crystallinity, normally associated with stronger weathering, peaked during the Early–Mid Holocene, the period of maximum summer monsoon. Hematite/goethite and magnetic susceptibility do not show clear co-variation, although they both increase at Indus-10 after 10 ka, as the monsoon weakened. At Indus-23, located on a clinoform just west of the canyon, hematite/goethite increased during a period of monsoon strengthening from 10 to 8 ka, consistent with increased seasonality and/or reworking of sediment deposited prior to or during the glacial maximum. After 2 ka terrigenous sediment accumulation rates in both cores increased together with redness and hematite/goethite, which we attribute to widespread cultivation of the floodplain triggering reworking, especially after 200 years ago. Over Holocene timescales sediment composition and mineralogy in two localities on the high-energy shelf were controlled by varying degrees of reworking, as well as climatically modulated chemical weathering

    North Atlantic ecosystem sensitivity to Holocene shifts in Meridional Overturning Circulation

    Get PDF
    Rapid changes in North Atlantic climate over the last millennia were driven by coupled sea surface/atmospheric processes and rates of deep-water formation. Holocene climate changes, however, remain poorly documented due to a lack of high-resolution paleoclimate records, and their impacts on marine ecosystems remain unknown. We present a 4500 years absolute-dated sea surface radiocarbon record from northeast Atlantic cold-water corals. In contrast to the current view that surface ocean changes occurred on millennial-scale cycles, our record shows more abrupt changes in surface circulation. Changes were centered at 3.4, 2.7, 1.7 and 1.2 ky BP, and associated with atmospheric re-organization. Solar irradiance may have influenced these anomalies, but changes in North Atlantic deep-water convection are likely to have amplified these signals. Critically, we provide the first evidence that these perturbations in Atlantic Meridional Overturning Circulation led to the decline of cold-water coral ecosystems from 1.2 to ~ 0.1 ky BP

    Changes in Holocene climate and the intensity of Southern Hemisphere Westerly Winds based on a high-resolution palynological record from sub-Antarctic South Georgia

    Get PDF
    Sub-Antarctic South Georgia is a key region for studying climate variability in the Southern Hemisphere, because of its position at the core of the Southern Hemisphere Westerly Wind belt and between the Antarctic Circumpolar Current and the Polar Frontal Zone. Here, we present a 5.8-m long high-resolution pollen record from Fan Lake on Annenkov Island dominated by local sub-polar vegetation, with Acaena and Poaceae being present throughout the last 7000 years. Palynological and sedimentological analyses revealed a warm late Holocene ‘climate optimum’ between 3790 and 2750 cal. yr BP, which was followed by a gradual transition to cool and wet conditions. This cooling was interrupted by slightly warmer environmental conditions between 1670 and 710 cal. yr BP that partly overlap with the Northern Hemisphere ‘Medieval Climate Anomaly’. Increases in non-native and long-distance pollen grains transported from South America (e.g. Nothofagus, Podocarpus) indicate that stronger Southern Hemisphere Westerly Winds over South Georgia possibly occurred during some ‘colder’ phases of the late Holocene, most notably between c. 2210 and 1670 cal. yr BP and after 710 cal. yr BP

    Ice marginal dynamics of the last British-Irish Ice Sheet in the southern North Sea: Ice limits, timing and the influence of the Dogger Bank

    Get PDF
    The southern North Sea is a particularly important area for understanding the behaviour of the British-Irish Ice Sheet (BIIS) during the last glacial cycle. It preserves a record of the maximum extent of the eastern sector of the BIIS as well as evidence for multiple different ice flow phases and the dynamic re-organisation of the BIIS. However, to date, the known ice sheet history and geochronology of this region is predominantly derived from onshore geological evidence, and the offshore imprint and dynamic history of the last ice sheet remain largely unknown. Using new data collected by the BRITICE-CHRONO project this paper explores the origin and age of the Dogger Bank; re-assesses the extent and age of the glaciogenic deposits across the shallow areas of the North Sea between the Dogger Bank and the north Norfolk coast and; re-examines the dynamic behaviour of the BIIS in the southern North Sea between 31.6 and 21.5 ka. This paper shows the core of the Dogger Bank to be composed glaciolacustrine sediment deposited between 31.6 and 25.8 ka. Following its formation the western end of the Dogger lake was overridden with ice reaching ∼54°N where the ice margin is co-incident with the southerly extent of subglacial tills previously mapped as Bolders Bank Fm. This initial ice override and retreat northwards back across the Dogger lake was complete by 23.1 ka, but resulted in widespread compressive glaciotectonism of the lake sediments and the formation of thrust moraine complexes. Along the northern edge of the bank moraines are on-lapped by later phase glaciolacustrine and marine sediments but do not show evidence of subsequent ice override. The shallow seafloor to the west and southwest of the Dogger Bank records several later phases of ice advance and retreat as the North Sea Lobe flowed between the Dogger Bank and the Yorkshire/Lincolnshire coasts and reached North Norfolk. New optically stimulated luminescence (OSL) ages from Garrett Hill on outwash limit the arrival of the BIIS on the Norfolk coast to 22.8–21.5 ka. Multiple till sheets and chains of moraines on the seafloor north of Norfolk mark dynamic oscillation of the North Sea Lobe margin as it retreated northwards. This pattern of behaviour is broadly synchronous with the terrestrial record of deposition of subglacial, glaciofluvial and glaciolacustrine sediments along the Yorkshire coast which relate to post Dimlington Stadial ice marginal oscillations after 21.5 ka. With respect to forcing mechanisms it is likely that during the early phases of the last glacial maximum (∼30-23ka) the interaction between the southern margin of the BIIS and the Dogger Lake was critical in influencing flow instability and rapid ice advance and retreat. However, during the latter part of the last glacial maximum (22–21 ka) late-phase ice advance in the southern North Sea became restricted to the western side of the Dogger Bank which was a substantial topographic feature by this time. This topographic confinement, in addition to decoupling of the BIIS and the Fennoscandian Ice Sheet (FIS) further north, enabled ice to reach the north Norfolk coast, overprinting the seabed with late-phase tills of the Bolders Bank Fm

    Retreat dynamics of the eastern sector of the British–Irish Ice Sheet during the last glaciation

    Get PDF
    The findings of BRITICE‐CHRONO Transect 2 through the North Sea Basin and eastern England are reported. We define ice‐sheet marginal oscillation between ~31 and 16 ka, with seven distinctive former ice‐sheet limits (L1–7) constrained by Bayesian statistical analysis. The southernmost limit of the North Sea Lobe is recorded by the Bolders Bank Formation (L1; 25.8–24.6 ka). L2 represents ice‐sheet oscillation and early retreat to the northern edge of the Dogger Bank (23.5–22.2 ka), with the Garret Hill Moraine in north Norfolk recording a significant regional readvance to L3 at 21.5–20.8 ka. Ice‐marginal oscillations at ~26–21 ka resulted in L1, L2 and L3 being partially to totally overprinted. Ice‐dammed lakes related to L1–3, including Lake Humber, are dated at 24.1–22.3 ka. Ice‐sheet oscillation and retreat from L4 to L5 occurred between 19.7 and 17.3 ka, with grounding zone wedges marking an important transition from terrestrial to marine tidewater conditions, triggered by the opening of the Dogger Lake spillway between 19.9 and 17.5 ka. L6 relates to ice retreat under glacimarine conditions and final ice retreat into the Firth of Forth by 15.8 ka. L7 (~15 ka) represents an ice retreat from Bosies Bank into the Moray Firth

    Molecular composition of organic aerosols in central Amazonia: An ultra-high-resolution mass spectrometry study

    Get PDF
    The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen-and/or sulfur-containing organic species contributed up to 60% of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen-and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments. © 2016 Author(s)

    Reconstructing 800 years of summer temperatures in Scotland from tree rings

    Get PDF
    We thank The Carnegie Trust for the Universities of Scotland for providing funding for Miloš Rydval’s PhD. The Scottish pine network expansion has been an ongoing task since 2007 and funding must be acknowledged to the following projects: EU project ‘Millennium’ (017008-2), Leverhulme Trust project ‘RELiC: Reconstructing 8000 years of Environmental and Landscape change in the Cairngorms (F/00 268/BG)’ and the NERC project ‘SCOT2K: Reconstructing 2000 years of Scottish climate from tree rings (NE/K003097/1)’.This study presents a summer temperature reconstruction using Scots pine tree-ring chronologies for Scotland allowing the placement of current regional temperature changes in a longer-term context. ‘Living-tree’ chronologies were extended using ’subfossil’ samples extracted from nearshore lake sediments resulting in a composite chronology > 800 years in length. The North Cairngorms (NCAIRN) reconstruction was developed from a set of composite blue intensity high-pass and ring-width low-pass chronologies with a range of detrending and disturbance correction procedures. Calibration against July-August mean temperature explains 56.4% of the instrumental data variance over 1866-2009 and is well verified. Spatial correlations reveal strong coherence with temperatures over the British Isles, parts of western Europe, southern Scandinavia and northern parts of the Iberian Peninsula. NCAIRN suggests that the recent summer-time warming in Scotland is likely not unique when compared to multi-decadal warm periods observed in the 1300s, 1500s, and 1730s, although trends before the mid-16th century should be interpreted with some caution due to greater uncertainty. Prominent cold periods were identified from the 16th century until the early 1800s – agreeing with the so-called Little Ice Age observed in other tree-ring reconstructions from Europe - with the 1690s identified as the coldest decade in the record. The reconstruction shows a significant cooling response one year following volcanic eruptions although this result is sensitive to the datasets used to identify such events. In fact, the extreme cold (and warm) years observed in NCAIRN appear more related to internal forcing of the summer North Atlantic Oscillation.Publisher PDFPeer reviewe
    corecore